If the angle of incidence is
4
0
∘
40
∘
, what will be the approximate angle of refraction for red light and violet light inside the prism?
Using Snell’s Law for red light:
1
×
sin
4
0
∘
=
1.52
×
sin
𝜃
red
1×sin40
∘
=1.52×sinθ
red
sin
𝜃
red
=
0.6428
1.52
≈
0.4227
sinθ
red
=
1.52
0.6428
≈0.4227
𝜃
red
≈
24.
8
∘
θ
red
≈24.8
∘
Similarly, for violet light:
1
×
sin
4
0
∘
=
1.54
×
sin
𝜃
violet
1×sin40
∘
=1.54×sinθ
violet
sin
𝜃
violet
=
0.6428
1.54
≈
0.4175
sinθ
violet
=
1.54
0.6428
≈0.4175
𝜃
violet
≈
24.
5
∘
θ
violet
≈24.5
Using Snell’s Law for red light:
1×sin40∘=1.52×sinθred1 \times \sin 40^\circ = 1.52 \times \sin \theta_{\text{red}}1×sin40∘=1.52×sinθred
sinθred=0.64281.52≈0.4227\sin \theta_{\text{red}} = \frac{0.6428}{1.52} \approx 0.4227sinθred=1.520.6428≈0.4227
θred≈24.8∘\theta_{\text{red}} \approx 24.8^\circθred≈24.8∘
Similarly, for violet light:
1×sin40∘=1.54×sinθviolet1 \times \sin 40^\circ = 1.54 \times \sin \theta_{\text{violet}}1×sin40∘=1.54×sinθviolet
sinθviolet=0.64281.54≈0.4175\sin \theta_{\text{violet}} = \frac{0.6428}{1.54} \approx 0.4175sinθviolet=1.540.6428≈0.4175
θviolet≈24.5∘\theta_{\text{violet}} \approx 24.5^\circθviolet≈24.5